
Math Circles - Pigeonhole Principle - Fall 2022

Week 1 (Nov 2)

Introduction

Let’s start with a warm up example.

Example. Suppose you have a drawer filled with red, yellow, and blue socks. If you blindly reach
in, how many socks do you need to pull out in order to guarantee that you have two socks of the
same colour?

Solution. We would need to pick out 4 socks. If we only pick out 3 socks, then we could have a red
sock, a blue sock, and a yellow sock, each of which is a different colour. So, we need to pick out at
least 4 socks. Without loss of generality, assume the first sock we pick out is red.1 If the second
sock is also red, then we have our match, and it doesn’t matter which colour the remaining socks
are. Otherwise, the second sock is either blue or yellow. Without loss of generality, suppose the
second sock is blue. If the third sock is either red or blue, then we have our match, and it doesn’t
matter which colour the remaining socks are. Otherwise, the third sock must be yellow. Now, since
we already have a red sock, a blue sock, and a yellow sock, any choice of colour for the fourth sock
will give us a match. So, we are guaranteed a match by choosing 4 socks. ■

This is an application of something called the pigeonhole principle.

Theorem (Pigeonhole Principle). If you have n holes (where n > 0) and m pigeons (where m > n),
and you put each of the m pigeons into one of the n holes, then one box will end up with at least
two pigeons in it.

In our example about the socks, the pigeons would be the socks, and the holes would be the colours.
Since we have 3 colours, then by the pigeonhole principle, we need at least 3 + 1 = 4 socks to
guarantee that we have two socks of the same colour.

Now, let’s make things a little more complicated.

Example. In the first exercise, suppose there are exactly 10 socks of each colour in the drawer. If
you blindly reach in, how many socks do you need to pull out in order to guarantee that you have
taken out 3 socks of the same colour?

Solution. We would need to pick out 7 socks. If we only picked out 6 socks, we could have exactly
2 socks of each colour. So, we need to pick out at least 7 socks. Let’s look at all possibilities of how
we could pick 7 socks from 3 colours:

1Without loss of generality means that even though we are picking a case to analyze, it doesn’t matter which case
we pick, because the proof is the same for each case.
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Red Blue Yellow

7 0 0
6 1 0
5 2 0
5 1 1
4 3 0
4 2 1
3 3 1
3 2 2

Notice that, without loss of generality, these are all the cases that we need to consider, because
any other case could be obtained by switching the order of the colours at the top of the table.
Specifically, there do not exist any other sets of 3 non-negative integers which add up to 7. Since
each possibility results in having 3 socks of the same colour, we have shown that we can achieve the
desired result by picking out 7 socks. ■

The idea here is similar to our first example: figure out the “worst case scenario” (in our case, this
would be when we have equal socks of each colour, as that is how we can pick out the most total
socks and have the least of a single colour), and then pick one more sock. It’s a more general version
of our first example, and is an application of something called the generalized pigeonhole principle.

Theorem (Generalized Pigeonhole Principle). If you have n holes (where n > 0) and m pigeons
(where m > n), and you put each of the m pigeons into one of the n holes, then one box will have
at least ⌈m

n ⌉ pigeons in it.2

Just like before, in our example about the socks, the pigeons would be the socks, and the holes would
be the colours. Since we have 3 colours, and we want to have 3 socks of the same colour, then by
the generalized pigeonhole principle, we need need x socks, such that ⌈x

3 ⌉ = 3. The smallest such x
is 7, so we need at least 7 socks.

Pigeonhole Proofs

So far, we have seen how to directly apply the pigeonhole principle to solve counting problems, which
can be really useful. However, it is used more often in mathematical proofs, often of seemingly-
unrelated statements. In these situations, the hardest part is often determining which part of the
question relates to the “holes” and which part of the question relates to the “pigeons”. The next
few examples are meant to demonstrate this.

Example. Let x1, . . . , x11 ∈ {0, 1, . . . , 99}. Show that for some i, j ∈ {1, 2, . . . , 11}, it must be the
case that |xi − xj | < 10.

Solution. Consider the sets A0 = {0, . . . , 9}, A1 = {10, . . . , 19}, . . . , A9 = {90, . . . , 99}. Notice that,
if a, b ∈ Ai, then |a − b| < 10. If we let the sets A0, . . . , A9 be our holes and we let the integers
x1, . . . x11 be our pigeons, then by the pigeonhole principle, there must be indices i and j such that
xi and xj lie in the same set (since we are trying to put 11 integers into 10 sets). So, for these values
of i and j, we have that |xi − xj | < 10. ■

Example. Suppose a sphere has 5 points drawn on it’s surface. Prove that there’s a way to cut it
in half such that 4 of the points lie on the same closed hemisphere.3

2⌈x⌉ is the ceiling function of x, and returns the largest integer greater than or equal to x.
3A closed hemisphere includes the boundary along which the sphere was cut in half. That is, if there is a point

lying on the dividing line between the two hemispheres, you can consider that point to lie on both hemispheres.
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Solution. Pick two of the points and draw a great circle4 through them; cut the sphere in half along
this great circle to obtain the two hemispheres. Since the hemispheres are closed, then both of these
points lie in both hemispheres.

We have three points left to consider. Let these three points be our pigeons, and let the hemispheres
be our holes. By the pigeonhole principle, two of them must lie in the same hemisphere. So, that
hemisphere contains at least 2 + 2 = 4 points. ■

Example. Given two equilateral triangles, show that it is impossible to use them to cover a strictly
larger equilateral triangle (without breaking any of the triangles into multiple pieces).

Solution. In a successful covering of the larger triangle with the smaller triangles, each point of the
larger triangle must be covered by one of the smaller triangles. This includes the three vertices of
the larger triangle. So, we can let the two smaller triangles be our holes, and the corners of our
larger equilateral triangle be our pigeons. By the pigeonhole principle, in any successful covering,
it must be the case that two vertices of the big triangle are covered by the same smaller triangle.
However, in an equilateral triangle, the maximum possible distance between two points is exactly
the distance between two vertices. Since the big triangle is strictly larger than each smaller triangle,
and all triangles are equilateral, it is not possible for two vertices of the big triangle to be covered
by the same smaller triangle. ■

4A great circle on a sphere is a circle drawn on the surface of the sphere which has the same diameter as the
sphere. In other words, it is the largest possible circle that can be drawn on the sphere. A unique great circle can
be drawn through any two points on the sphere, and the shortest distance between two points on the surface of the
sphere is the shortest distance along the great circle passing through both of them.
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